

METER 0.6.5 Documentation

METER (Multi-state Estimates for Time-to-Event Research) is a Python package for multi-state modelling of time-to-event data. It contains functions for building multi-state life tables from discrete-time data that can be used to generate point estimates and confidence intervals for life expectancies. METER also provides functions to produce plots of transition probabilites and Kaplan-Meier plots of survival data.

Guide

	Should I use METER?

	Installation

	Constructing Multi-State Life Tables

	Generating Survival Estimates
	Survival Predictions

	Life Expectancies

	Graphical Summaries

General

	License
	Contact

	Need Help?

Indices and tables

	Index

Should I use METER?

METER is specifically designed for discrete-time, time-inhomogenous, and acyclic multi-state markov models. To go through each of these elements individually:

	The main assumption of a markov model is that the past states of a process do not affect transition probabilites going forward. If you have an application where the previous states of a process are likely to have an effect (if you are studying radiation exposure, for example) this assumption will not hold and you should consider using a semi-markov model.

	Discrete-time means that observations are taken at regular time intervals that can be indexed by natural numbers. Typically this means that the data is indexed by days or years. This assumption will not hold for data with inconsistent intervals between observations, which would be typical for clinical data on cancer relapse and many types of survey data.

	Acyclic means that states have a defined order and it is not possible to move backwards to a preceding state. For the time being, METER does not support cyclic models, although this is high on the list of planned improvements.

	Time-inhomogenous means that time from study entry affects the probability of transitions between states. This is typical for data that stretches over long periods of time, where subject age may be a relevant factor. For example, an individual diagnosed with type 2 diabetes at age 20 is going to have a much better short-term survival prognosis than an 80-year-old with the same diagnosis.

You can still use METER if you believe that your process is time-homogenous, but you might have simpler options available. If you want to model a continuous time process, I suggest using the R package MSM [https://cran.r-project.org/web/packages/msm/index.html].

If you haven’t used Python before I would recommend going through a tutorial or two and familiarizing yourself with basic datatypes, but you will not need any advanced knowledge of the language to use METER. You should also make sure that you know how to import .xls and .csv files as pandas dataframes. If you want to do anything beyond the core functionality of the package a decent background in pandas [https://pandas.pydata.org/] will be very useful.

Installation

Run the following in your command line or python console:

pip install METER

For a look at past versions or to download files directly, visit PyPI [https://pypi.org/project/METER/].

Constructing Multi-State Life Tables

The first step to using METER is to have your data in the correct format. The data should have one subject per row, and have columns containing each of the transition times. Transition times can be specified as calendar dates or time from study entry, as the wide_format function will convert everything into the latter format.

	To obtain the transition matrices of the multi-state model you should do the following:
	
	Use wide_format() to obtain the data in wide format.

	Use atrisk_and_transitions() to obtain the risk sets and number of transitions made at each time point.

	Use transitionprobs_and_samplesizes() to obtain the transition matrices for each time point, and the associated sample sizes.

If you don’t need the transition probabilities directly, and just want associated life expectancies or other survival estimates, you can just do step one and then skip forward to the section on generating estimates.

Note

You should still be running wide_format even if your data already has transition times specified as time from study entry. This is because the wide_format function creates status columns that indicate whether each transition ever occured for a given subject, and ensures that there is only one transition per year.

METER also allows you to censor data at a given state. This is often useful for reasons mentioned in Life Expectancies. If you want to censor your data, you should do this immediately after step 1 above, using censor().

	
METER.wrangler.wide_format(data, transition_names, exit)

	Take data with transitions as calendar dates and expand for life table construction. If multiple transitions occur at the same time (i.e. in the same year or day) then only the final transition is counted as occuring.

	Parameters

	
	data (pandas dataframe) – the data, with dates of all transitions, with one subject per line

	transition_names (list) – a list of the names of the columns that contain the transition times

	exit (string) – the name of the column indicating final follow-up date for each subject

	Returns

	a dataframe with additional columns for:

	transitions as time from study entry

	transition status columns indicating whether such a transition ever occurred

	a column final_age, for age at study close-out

	Return type

	pandas dataframe

	
METER.table.atrisk_and_transitions(data, transition_names, states)

	Get the number of individuals in a given state at a each time, and number of transitions at each time.

	Parameters

	
	data (pandas dataframe) – the data in wide format as generated by wide_format()

	transition_names (list) – a list of the names of the columns that contain the transition times

	states (list) – the names of the states in the model, the entry into each of which will correspond to the columns in transition_names

	Returns

	a two element list with:

	first element a dataframe containing the risk sets for each time point

	second element a dataframe containing the number of transitions of each type at each time point

	Return type

	list

	
METER.table.transitionprobs_and_samplesizes(riskdf, transdf, states)

	Obtain transition matrices governing transitions from each time point, and associated sample sizes.

	Parameters

	
	riskdf (pandas dataframe) – a dataframe with the number of individuals in each state, indexed at each time point. This is the first output from atrisk_and_transitions()

	transdf (pandas dataframe) – a dataframe containing the number of transitions of each type at each time point. The second output from atrisk_and_transitions()

	states (list) – the names of the states in the model

	Returns

	a two element list with:

	first element a list containing the transition matrix (as a numpy array) for each time point

	second element a list containing a matrix of the associated sample sizes

	Return type

	list

	
METER.wrangler.censor(data, transition, transition_names)

	censor all individuals in a dataframe at a given state

	Parameters

	
	data (pandas dataframe) – the dataframe in wide format as created by wide_format()

	transition (string) – the column name in the original dataset that represents transitions into the state you want to censor at

	transition_names (list) – a list of the names of the columns that contain the transition times

	Returns

	a new dataframe where all individuals have been censored at the desired state

	Return type

	pandas dataframe

Generating Survival Estimates

Survival Predictions

First, make sure that you have generated the transition matrices.

Future state probabilites for any population of individuals from an initial time can be generated using survivorship_vector(). The most common application is likely to be generating future state probabilities for one individual, which can be obtained by specifying a radix with a 1 in the position of the state you want to predict from. At this point you can also generate a life expectancy for an individual starting in any state at any time from study entry using life_expectancy(), although it is possible to use censorLE() to obtain this directly from the data in wide format.

Note

It is implicitly assumed that the final state in your model is death, but this will also work for other outcomes that are the terminal state of a study. For example, if your study outcome is the age of reaching menopause then the life expectancy function will still give you a valid estimate.

	
METER.table.survivorship_vector(transmat, radix, initial_time, states)

	Predict the expected proportion of a population being in a given state at each time point based on some
initial time and number of individuals currently in each state. To get probabilities for one individual,
simply proceed for a 1-individual population.

	Parameters

	
	transmat (list) – a list of numpy matrices that represent the transition probabilities at each
time point. This is the first output from transitionprobs_and_samplesizes().

	states (list) – the names of the states in the model

	radix (numpy array) – an initial condition for the number of subjects in each state we want to model, specified
as a numpy vector. For example, if we wanted the probabilities of being in each state for
1 individual starting at the first state in a 6-state model the radix would be generated by
np.array([[1],[0],[0],[0],[0],[0]], dtype=float).

	initial_time (int) – the initial time to model the survivorship outcomes from

	Returns

	a dataframe with the expected proportion of the population in each state at each time point past the
initial time given

	Return type

	pandas dataframe

	
METER.table.life_expectancy(transmat, initial_state, initial_time, states)

	Predict the life expectancy of an individual based on current state and age

	Parameters

	
	transmat (list) – a list of numpy matrices that represent the transition probabilities at each
age. This is the first output from transitionprobs_and_samplesizes().

	states (list) – the names of the states in the model.

	initial_state (string) – the initial state to model the survivorship ourcomes from.

	initial_age (int) – the initial time to model the survivorship outcomes from

	Returns

	the life expectancy of an individual given the parameters specified

	Return type

	float

Life Expectancies

For the methods in this section, it is not necessary to have obtained the transition matrices. However, make sure that you have used wide_format() to get the data in the correct format.

METER permits 4 different ways of characterizing an individual when computing life expectancies:

	The initial state is the state that the individual starts in, and is required whenever you ask METER to compute life expectancy point estimates or confidence intervals.

	The initial time is the time point that you are predicting from. METER always gives life expectancy from this point forwards, so if you want absolute life expectancy estimates from study entry you should add this on after you’ve obtained the estimates.

	A censor state is a state that you want to restrict the individual from moving beyond. This is useful for applications where you want to assess the life expectancy effect of attaining a certain state (eg. an award or military rank) and want to prevent your estimates for the control group from being affected by potential future transitions to that state.

	Finally, you can specify any arbitrary set of covariate conditions for subgroup analysis. For the time being these need to be categorical covariates, although this is on the list of improvements for future versions.

Point estimates of life expectancy can be obtained using censorLE() directly from the data in wide format. As mentioned above, the initial state is a mandatory input. Unless the other conditions mentioned are specified, METER will assume that you want estimates from study entry (time point 0), with no censoring, and with no covariate restrictions.

To obtain confidence intervals by non-parametric bootstrap, you can use bootstrapLE() to get a dataframe of bootstrap runs, and then use summary_results() to obtain the confidence intervals and point estimates. METER allows you to run the bootstrap for any arbitrary set of groups, each defined by different initial states, censor states, and covariate restrictions. The initial time must be constant over each of these groups, because METER also provides confidence intervals and point estimates for the difference between these groups, and those measures only make sense if each group begins at the same time point from study entry.

METER is fast. 1000 bootstraps on a dataset of 5000 individuals with less than 10 states in the model for less than 5 groups should take under 15 minutes. If you want a log of how far your bootstrap has progressed printed to the console set loud=TRUE, and you will know whether you have time to go get a coffee.

Note

If you are comparing life expectancies for a number of different groups, I highly recommend using the group_names input to bootstrapLE. By default the groups will be named based on the initial states and these names may not be unique, which could cause a great deal of confusion.

	
METER.table.censorLE(data, transition_names, states, initial_state, initial_time=0, censor_state='default', conditions=None)

	Get the life expectancy of an individual based on initial state, initial time, and any censor states or covariate conditions.

	Parameters

	
	data (pandas dataframe) – the data in wide format as generated by wide_format()

	transition_names (list) – a list of the names of the columns that contain the transition times

	states (list) – the names of the states in the model

	initial_state (string) – the initial state that you want to estimate life expectancy from

	initial_time (int) – optional input if you want to estimate life expectancy after a given time (by default 0)

	censor_state (string) – a particular state that you want to restrict movement beyond (by default none)

	conditions (dictionary) – a set of conditions you want the group to be subject to (by default none).
ex. {‘Smoking’: ‘Yes’, ‘Race’: ‘White’}

	Returns

	the life expectancy of an individual starting in the initial state given the conditions provided

	Return type

	float

	
METER.summaries.bootstrapLE(data, transition_names, states, initial_states, n=1000, initial_time=0, censor_states='default', group_names='default', conditions='default', loud=False)

	Run a bootstrap on the life expectancy for a given set of groups

	Parameters

	
	data (pandas dataframe) – the data in wide format as generated by wide_format()

	transition_names (list) – a list of the names of the columns that contain the transition times

	states (list) – the names of the states in the model

	initial_states (list) – a list of initial states to estimate from

	n (int) – the number of bootstraps to run, by default 1000.

	initial_time (int) – to estimate life expectancy after a given time (by default 0)

	censor_states (list) – the states you want each group’s life expectancy to be censored at (by default no censoring)
if provided this list must be the same length as initial_states

	group_names (list) – what the groups (whose structure is defined both by the initial states and censor states given)
are to be called. by default this is the same as the initial states. if provided this list must be the same length as initial_states

	conditions (list) – a list of dictionaries of conditions you want each group to be subject to (by default none).
ex. [{‘Race’: ‘White’, ‘Smoking’: ‘Yes’}, {‘Race’: ‘Black’, ‘Smoking’: ‘No’}]

	loud (bool) – by default this is false. If it is set to true a small summary of the results of each bootstrap
as well as the best estimate calculated initially are printed to the console.

	Returns

	a dataframe containing the results of each run of the bootstrap. Each row will include that
bootstrap life expectancy for each group as well as each of the possible group differences.

	Return type

	pandas dataframe

	
METER.summaries.summary_results(bootstrap, confidence_level=0.95)

	Summarize the results of a bootstrap.

	Parameters

	
	bootstrap (pandas dataframe) – the bootstrap dataframe generated by bootstrapLE()

	confidence_level (float) – the confidence level which you want to generate confidence intervals for

	Returns

	A dataframe summarizing the point estimates and confidence intervals for each quantity.

	Return type

	pandas dataframe

Graphical Summaries

If you have obtained future state probabilites for an individual using survivorship_vector(), you can obtain a nice stacked area plot of state probabilities using survivorship_graph(). The aesthetic value of these plots is heavily dependent on your choice of colours, so you may want to play around with that a bit.

	
METER.plots.survivorship_graph(survdf, states, colors, order='default')

	Stacked area chart of state probabilities for an individual.

	Parameters

	
	survdf (pandas dataframe) – a dataframe containing the given probabilities of being in each state at each age for some
initial condition. This is precisely the output of survivorship_vector().

	states (list) – a list of the states in the model

	colors (list) – a list of colors accepted by matplotlib (as strings) that matches the number of states

	order (list) – the order you want the states to be from top to bottom in the graph. The default is reverse order,
which is fairly visually appealing. If an input is passed it should be something like [0,1,2,3] with 0
representing the first state, 1 the second state, etc.

	Returns

	a graph of state proportions for some initial conditions

	Return type

	plot

License

Creative Commons Legal Code

CC0 1.0 Universal

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an “owner”) of an original work of
authorship and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works (“Commons”) that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.

For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the “Affirmer”), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights (“Copyright and
Related Rights”). Copyright and Related Rights include, but are not
limited to, the following:

(i). the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;

(ii). moral rights retained by the original author(s) and/or performer(s);

(iii). publicity and privacy rights pertaining to a person’s image or likeness depicted in a Work;

(iv). rights protecting against unfair competition in regards to a Work, subject to the limitations in paragraph 4(a), below;

(v). rights protecting the extraction, dissemination, use and reuse of data in a Work;

(vi). database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and

(vii). other similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer’s Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the “Waiver”). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer’s heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer’s express Statement of Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer’s express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer’s Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
“License”). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer’s
express Statement of Purpose.

	Limitations and Disclaimers.

	No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.

	Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.

	Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person’s Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.

	Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

Contact

Questions? Please contact mrisk435@gmail.com

Need Help?

Please contact mrisk435@gmail.com

Index

 A
 | B
 | C
 | L
 | S
 | T
 | W

A

 	
 	atrisk_and_transitions() (in module METER.table)

B

 	
 	bootstrapLE() (in module METER.summaries)

C

 	
 	censor() (in module METER.wrangler)

 	
 	censorLE() (in module METER.table)

L

 	
 	life_expectancy() (in module METER.table)

S

 	
 	summary_results() (in module METER.summaries)

 	
 	survivorship_graph() (in module METER.plots)

 	survivorship_vector() (in module METER.table)

T

 	
 	transitionprobs_and_samplesizes() (in module METER.table)

W

 	
 	wide_format() (in module METER.wrangler)

 nav.xhtml

 Table of Contents

 		
 METER 0.6.5 Documentation

 		
 Should I use METER?

 		
 Installation

 		
 Constructing Multi-State Life Tables

 		
 Generating Survival Estimates

 		
 Survival Predictions

 		
 Life Expectancies

 		
 Graphical Summaries

 		
 License

 		
 Contact

 		
 Need Help?

_static/plus.png

_static/file.png

_static/minus.png

